A novel transcription factor specifically regulates GH11 xylanase genes in Trichoderma reesei
نویسندگان
چکیده
BACKGROUND The filamentous fungus Trichoderma reesei is widely utilized in industry for cellulase production, but its xylanase activity must be improved to enhance the accessibility of lignocellulose to cellulases. Several transcription factors play important roles in this progress; however, nearly all the reported transcription factors typically target both cellulase and hemi-cellulase genes. Specific xylanase transcription factor would be useful to regulate xylanase activity directly. RESULTS In this study, a novel zinc binuclear cluster transcription factor (jgi|Trire2|123881) was found to repress xylanase activity, but not cellulase activity, and was designated as SxlR (specialized xylanase regulator). Further investigations using real-time PCR and an electrophoretic mobility shift assay demonstrated that SxlR might bind the promoters of GH11 xylanase genes (xyn1, xyn2, and xyn5), but not those of GH10 (xyn3) and GH30 (xyn4) xylanase genes, and thus regulate their transcription and expression directly. We also identified the binding consensus sequence of SxlR as 5'- CATCSGSWCWMSA-3'. The deletion of SxlR in T. reesei RUT-C30 to generate the mutant ∆sxlr strain resulted in higher xylanase activity as well as higher hydrolytic efficiency on pretreated rice straw. CONCLUSIONS Our study characterizes a novel specific transcriptional repressor of GH11 xylanase genes, which adds to our understanding of the regulatory system for the synthesis and secretion of cellulase and hemi-cellulase in T. reesei. The deletion of SxlR may also help to improve the hydrolytic efficiency of T. reesei for lignocellulose degradation by increasing the xylanase-to-cellulase ratio.
منابع مشابه
Xylanase gene transcription in Trichoderma reesei is triggered by different inducers representing different hemicellulosic pentose polymers.
The ascomycete Trichoderma reesei is a paradigm for the regulation and production of plant cell wall-degrading enzymes, including xylanases. Four xylanases, including XYN1 and XYN2 of glycosyl hydrolase family 11 (GH11), the GH10 XYN3, and the GH30 XYN4, were already described. By genome mining, we identified a fifth xylanase, XYN5, belonging to GH11. Transcriptional analysis reveals that the e...
متن کاملACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression.
We characterized the effect of deletion of the Trichoderma reesei (Hypocrea jecorina) ace1 gene encoding the novel cellulase regulator ACEI that was isolated based on its ability to bind to and activate in vivo in Saccharomyces cerevisiae the promoter of the main cellulase gene, cbh1. Deletion of ace1 resulted in an increase in the expression of all the main cellulase genes and two xylanase gen...
متن کاملAchieving efficient protein expression in Trichoderma reesei by using strong constitutive promoters
BACKGROUNDS The fungus Trichoderma reesei is an important workhorse for expression of homologous or heterologous genes, and the inducible cbh1 promoter is generally used. However, constitutive expression is more preferable in some cases than inducible expression that leads to production of unwanted cellulase components. In this work, constitutive promoters of T. reesei were screened and success...
متن کاملScreening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production
BACKGROUND The soft rot ascomycetal fungus Trichoderma reesei is utilized for industrial production of secreted enzymes, especially lignocellulose degrading enzymes. T. reesei uses several different enzymes for the degradation of plant cell wall-derived material, including 9 characterized cellulases, 15 characterized hemicellulases and at least 42 genes predicted to encode cellulolytic or hemic...
متن کاملACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei.
A novel yeast-based method to isolate transcriptional activators was applied to clone regulators binding to the cellulase promoter cbh1 of the filamentous fungus Trichoderma reesei (Hypocrea jecorina). This led to the isolation of the cellulase activator ace2 encoding for a protein belonging to the class of zinc binuclear cluster proteins found exclusively in fungi. The DNA-binding domain of AC...
متن کامل